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Motivation

• Lots  parallelism 
- 150$ Cyclone V SoC  - 60 stencil tasks 

•10s of cycles for invoking a hardware “task” 

•Fine-grain parallelism 
- Cyclone V. 512 arithmetic ops

FPGAs are everywhere
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 High Level Synthesis

•Mixes schedule and algorithm 
-#pragma 

• Static schedule 
-limited concurrency control  

•Domain specific templates 
-generalizable ?

HLS Compiler
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Clang



TAPAS: Auto generating 
Parallel Dataflow Accelerator

Cilk/Go/OpenMP

TAPAS
Parallel Accelerator

•Hardware component library: 
- like UCB Rocket, but for accelerators
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•MIT’s parallel compiler(TAPIR)

•Generator 
- synthesizing RTL from compiler IR



Overview

•HLS Challenge: Static Parallelism 

•TAPAS : modular high level synthesis 

• TAPAS: generating task units
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HLS Challenge: Static Parallelism

 for(i = 0 until n){
  if(node[i].valid){          
   compute(&node[i]);
 }

Loop bound is 
unknown

Conditional 
BodyNon-

deterministic 
latency
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HLS Challenge: Static Parallelism
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Tile 0
Unrolled Program Hardware
#pragma UNROLL 2

valid?

compute

Tile 1

valid?

compute

 for(i = 0 until n){
  if(node[i].valid){          
   compute(&node[i]);
 }

Worst case schedule —> Low utilization



Our Approach: Dynamic Parallelism

 8

 for(i = 0 until n){
    if(node[i].valid){
    compute(&node[i]);
 }

Task Program

Spawn 

Sync;

Root

for (); if (valid)

Task Hardware

Child

compute

Spawn Sync

Run time schedule —> High utilization



Compilation Flow
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Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Cilk/Go

Task extraction

Top RTL Generation

Generate TXUs



Compilation Flow
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for(i = 0 until n){
  if(node[i].valid){          
    compute(&node[i])
  }
}

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Cilk/Go

Task extraction

Top RTL Generation

Generate TXUs



Compilation Flow

 11

Static Task  
Graph

Root

Child

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Cilk/Go

Task extraction

Top RTL Generation

Generate TXUs



Queue
Child Task

Compilation Flow
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Queue

Cilk/Go

Root Task

SyncSpawn 

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Task extraction

Top RTL Generation

Generate TXUs

Task-level 
Architecture



Compilation Flow
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Root
for (); if (valid)

Child compute

Spawn Sync

Cilk/Go

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Task extraction

Top RTL Generation

Generate TXUs

Task Execution  
Unit



Static Task Graph
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cilk_for(i = 0 until n){
  cilk_for(j = 0 until n){
    c[i][j] =
        a[i][j]+b[i][j];
  }
}

T0

T1

T2

for_i

for_j

body

•Parallel Compiler 

•Captures Spawn and Sync from IR


•Task Extractor: 

•Wraps each task in a first class entity



Task-Level Architecture
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Heterogeneous! Nested Parallel!

Queue

for j

Queue

for i
SyncSpawn 

Queue

body

SyncSpawn 

#C

Child

Parent

Parent ID

compute

Asynchronous!



Task Level Execution
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T0

T1

T2

for_i

for_j

body

0
Parent ID Child

RootT0

Parent ID Child

T1

E

R



0
Parent ID Child

RootT0

Parent ID Child

T1

E

R

Task Level Execution
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T0

T1

T2

for_i

for_j

body

Spawn



Task Level Execution
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T0

T1

T2

for_i

for_j

body

1
Parent ID Child

RootT0

0
Parent ID Child

T0:0T1

E

E

0

0



Task-Level Execution
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T0

T1

T2

for_i

for_j

body

N
Parent ID Child

RootT0

M-1
Parent ID Child

T0:0T1

S

E

Parent ID Child

T2 R

0T0:0R

0

0
1

Spawn



Task Level Execution
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T0

T1

T2

for_i

for_j

body

N
Parent ID Child

RootT0

M
Parent ID Child

T0:0T1

S

S

0
Parent ID Child

T1:0T2 E

0T0:0E

0

0
1

0



Task Level Execution
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T0

T1

T2

for_i

for_j

body

N
Parent ID Child

RootT0

M
Parent ID Child

T0:0T1

S

S

0
Parent ID Child

T1:0T2 C

0

0

0T1:0E
0
1

Sync



Task Level Execution
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T0

T1

T2

for_i

for_j

body

N
Parent ID Child

RootT0

M-1
Parent ID Child

T0:0T1

S

S

0
Parent ID Child

T1:0T2 E

0

0

0



Supporting Dynamic Task Graphs
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• What does task pipelining look like in TAPAS?
Dedup



Supporting Dynamic Task Graphs
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Dedup

Regulare task pipeline

• What does task pipelining look like in TAPAS?



Supporting Dynamic Task Graphs
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Dedup
Irregular task pipeline

• What does task pipelining look like in TAPAS?



Supporting Dynamic Task Graphs
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Dedup

TAPAS supports  
recursive tasks as well 

(Paper: ⌘5)

Conditional task pipeline

• What does task pipelining look like in TAPAS?



Compilation Flow
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Root
for (); if (valid)

Child compute

Spawn Sync

Cilk/Go

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Task extraction

Top RTL Generation

Generate TXUs

Task Execution 
Unit



compute

Task Execution Unit (TXU)
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Task Queue

compute

•What are the element inside each TXU?

compute

Multi-core

Asynchronous!

Dynamic issue Available task!

Ready



Task Execution Unit (TXU)
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c[i][j] = a[i][j]+b[i][j];

Load 
A[i][j]

GEP A[i][j]
Ready

GEP B[i][j]
Ready

Add (A+B)
Ready

GEP C[i][j]
Ready

Store 
C[i][j]

Load 
B[i][j]

compute



Task Execution Unit (TXU)
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c[i][j] = a[i][j]+b[i][j];

Load 
A[i][j]

GEP A[i][j]
Ready

GEP B[i][j]
Ready

Add (A+B)
Ready

GEP C[i][j]
Ready

Store 
C[i][j]

Load 
B[i][j]

Support for all 
LLVM semantics



Task Execution Unit (TXU)
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c[i][j] = a[i][j]+b[i][j];

?

Mem Req

?Mem Req

L1

Load 
A[i][j]

GEP A[i][j]
Ready

GEP B[i][j]
Ready

Add (A+B)
Ready

GEP C[i][j]
Ready

Store 
C[i][j]

Load 
B[i][j]

Dynamically scheduled 
interface

Decoupled 
interfaces



Task Execution Unit (TXU)
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c[i][j] = a[i][j]+b[i][j];

Load 
A[i][j]

GEP A[i][j]
Ready

GEP B[i][j]
Ready

Add (A+B)
Ready

GEP C[i][j]
Ready

Store 
C[i][j]

Load 
B[i][j]

i = 0, j = 3

i = 0, j = 2

i = 0, j = 1

i = 0, j = 0



Experiment
•Board: 
-Arria 10 SOC 
-Intel core i7 

•Execution time reported 
-Number of Cycles 

•Goal: 
-Performance/watt improvement 
-Reducing overhead of spawning tasks with few 
instructions
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How does performance scale with workload size?
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•Unlike a CPU, FPGA performance scales with #TXU 
even for fine grained parallelism.
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Does performance scale with recursion?
•Performance scales with recursive algorithms
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How does performance compare to CPU?
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•Performance gain compare to a Intel core i7
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How does Performance/Watt compare to CPU?
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•Performance/Watt has significant improvement
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What is the overhead of task controller?
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•ALM Utilization by Sub-block

11%
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40%
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Available now
https://github.com/sfu-arch/tapas

Thanks Chisel and Tapir folks

Shout out to related…
• An Architectural Framework for Accelerating Dynamic Parallel Algorithms on 

Reconfigurable Hardware (MICRO51) 
• Dynamically scheduled high-level synthesis (FPGA18`)



Parametrization and Configuration
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•TAPAS generated accelerator is Parametrizable and 
Configurable. 

- The number of TXUs can be set specifically for each task 
base on different criteria.


-Datapath width can be set at this phase, supporting 
mixed precision as well.


-Memory modules within each Task Unit are configurable 
like scratchpads, network and cache.


