
TAPAS: Generating Parallel
Accelerators from Parallel Programs

Steven Margerm1, Amirali Sharifian1, Apala Guha1  
Gilles Pokam2, Arrvindh Shriraman1

Simon Fraser University1, Intel Corp.2

https://github.com/sfu-arch/tapas

 1

Motivation

• Lots parallelism
- 150$ Cyclone V SoC - 60 stencil tasks

•10s of cycles for invoking a hardware “task”

•Fine-grain parallelism
- Cyclone V. 512 arithmetic ops

FPGAs are everywhere

 2

 High Level Synthesis

•Mixes schedule and algorithm
-#pragma

• Static schedule
-limited concurrency control

•Domain specific templates
-generalizable ?

HLS Compiler

 3

Clang

TAPAS: Auto generating 
Parallel Dataflow Accelerator

Cilk/Go/OpenMP

TAPAS
Parallel Accelerator

•Hardware component library:
- like UCB Rocket, but for accelerators

 4

•MIT’s parallel compiler(TAPIR)

•Generator
- synthesizing RTL from compiler IR

Overview

•HLS Challenge: Static Parallelism

•TAPAS : modular high level synthesis

• TAPAS: generating task units

 5

HLS Challenge: Static Parallelism

 for(i = 0 until n){
 if(node[i].valid){
 compute(&node[i]);
 }

Loop bound is
unknown

Conditional
BodyNon-

deterministic
latency

 6

HLS Challenge: Static Parallelism

 7

Tile 0
Unrolled Program Hardware
#pragma UNROLL 2

valid?

compute

Tile 1

valid?

compute

 for(i = 0 until n){
 if(node[i].valid){
 compute(&node[i]);
 }

Worst case schedule —> Low utilization

Our Approach: Dynamic Parallelism

 8

 for(i = 0 until n){
 if(node[i].valid){
 compute(&node[i]);
 }

Task Program

Spawn

Sync;

Root

for (); if (valid)

Task Hardware

Child

compute

Spawn Sync

Run time schedule —> High utilization

Compilation Flow

 9

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Cilk/Go

Task extraction

Top RTL Generation

Generate TXUs

Compilation Flow

 10

for(i = 0 until n){
 if(node[i].valid){
 compute(&node[i])
 }
}

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Cilk/Go

Task extraction

Top RTL Generation

Generate TXUs

Compilation Flow

 11

Static Task  
Graph

Root

Child

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Cilk/Go

Task extraction

Top RTL Generation

Generate TXUs

Queue
Child Task

Compilation Flow

 12

Queue

Cilk/Go

Root Task

SyncSpawn

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Task extraction

Top RTL Generation

Generate TXUs

Task-level 
Architecture

Compilation Flow

 13

Root
for (); if (valid)

Child compute

Spawn Sync

Cilk/Go

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Task extraction

Top RTL Generation

Generate TXUs

Task Execution  
Unit

Static Task Graph

 14

cilk_for(i = 0 until n){
 cilk_for(j = 0 until n){
 c[i][j] =
 a[i][j]+b[i][j];
 }
}

T0

T1

T2

for_i

for_j

body

•Parallel Compiler

•Captures Spawn and Sync from IR

•Task Extractor:

•Wraps each task in a first class entity

Task-Level Architecture

 15
Heterogeneous! Nested Parallel!

Queue

for j

Queue

for i
SyncSpawn

Queue

body

SyncSpawn

#C

Child

Parent

Parent ID

compute

Asynchronous!

Task Level Execution

 16

T0

T1

T2

for_i

for_j

body

0
Parent ID Child

RootT0

Parent ID Child

T1

E

R

0
Parent ID Child

RootT0

Parent ID Child

T1

E

R

Task Level Execution

 17

T0

T1

T2

for_i

for_j

body

Spawn

Task Level Execution

 18

T0

T1

T2

for_i

for_j

body

1
Parent ID Child

RootT0

0
Parent ID Child

T0:0T1

E

E

0

0

Task-Level Execution

 19

T0

T1

T2

for_i

for_j

body

N
Parent ID Child

RootT0

M-1
Parent ID Child

T0:0T1

S

E

Parent ID Child

T2 R

0T0:0R

0

0
1

Spawn

Task Level Execution

 20

T0

T1

T2

for_i

for_j

body

N
Parent ID Child

RootT0

M
Parent ID Child

T0:0T1

S

S

0
Parent ID Child

T1:0T2 E

0T0:0E

0

0
1

0

Task Level Execution

 21

T0

T1

T2

for_i

for_j

body

N
Parent ID Child

RootT0

M
Parent ID Child

T0:0T1

S

S

0
Parent ID Child

T1:0T2 C

0

0

0T1:0E
0
1

Sync

Task Level Execution

 22

T0

T1

T2

for_i

for_j

body

N
Parent ID Child

RootT0

M-1
Parent ID Child

T0:0T1

S

S

0
Parent ID Child

T1:0T2 E

0

0

0

Supporting Dynamic Task Graphs

 23

• What does task pipelining look like in TAPAS?
Dedup

Supporting Dynamic Task Graphs

 24

Dedup

Regulare task pipeline

• What does task pipelining look like in TAPAS?

Supporting Dynamic Task Graphs

 25

Dedup
Irregular task pipeline

• What does task pipelining look like in TAPAS?

Supporting Dynamic Task Graphs

 26

Dedup

TAPAS supports  
recursive tasks as well 

(Paper: ⌘5)

Conditional task pipeline

• What does task pipelining look like in TAPAS?

Compilation Flow

 27

Root
for (); if (valid)

Child compute

Spawn Sync

Cilk/Go

Task Graph Representation

Task-Level RTL

TAPAS Accelerator

Task extraction

Top RTL Generation

Generate TXUs

Task Execution 
Unit

compute

Task Execution Unit (TXU)

 28

Task Queue

compute

•What are the element inside each TXU?

compute

Multi-core

Asynchronous!

Dynamic issue Available task!

Ready

Task Execution Unit (TXU)

 29

c[i][j] = a[i][j]+b[i][j];

Load
A[i][j]

GEP A[i][j]
Ready

GEP B[i][j]
Ready

Add (A+B)
Ready

GEP C[i][j]
Ready

Store
C[i][j]

Load
B[i][j]

compute

Task Execution Unit (TXU)

 30

c[i][j] = a[i][j]+b[i][j];

Load
A[i][j]

GEP A[i][j]
Ready

GEP B[i][j]
Ready

Add (A+B)
Ready

GEP C[i][j]
Ready

Store
C[i][j]

Load
B[i][j]

Support for all
LLVM semantics

Task Execution Unit (TXU)

 31

c[i][j] = a[i][j]+b[i][j];

?

Mem Req

?Mem Req

L1

Load
A[i][j]

GEP A[i][j]
Ready

GEP B[i][j]
Ready

Add (A+B)
Ready

GEP C[i][j]
Ready

Store
C[i][j]

Load
B[i][j]

Dynamically scheduled
interface

Decoupled
interfaces

Task Execution Unit (TXU)

 32

c[i][j] = a[i][j]+b[i][j];

Load
A[i][j]

GEP A[i][j]
Ready

GEP B[i][j]
Ready

Add (A+B)
Ready

GEP C[i][j]
Ready

Store
C[i][j]

Load
B[i][j]

i = 0, j = 3

i = 0, j = 2

i = 0, j = 1

i = 0, j = 0

Experiment
•Board:
-Arria 10 SOC
-Intel core i7

•Execution time reported
-Number of Cycles

•Goal:
-Performance/watt improvement
-Reducing overhead of spawning tasks with few
instructions

 33

How does performance scale with workload size?

 34

•Unlike a CPU, FPGA performance scales with #TXU
even for fine grained parallelism.

Pe
rfo

rm
an

ce

(M
illi

on
 A

dd
s/

s)

0

500

1000

1500

2000

1 Tile 2 Tile 3 Tile 4 Tile

Software 10 Ops 20 Ops 40 Ops

50 Increment

Does performance scale with recursion?
•Performance scales with recursive algorithms

 35

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

0

1.75

3.5

5.25

7

Stencil fib(n=15) mergesort

1 Tile 2 Tiles 4 TIles 8 Tiles

= 1

How does performance compare to CPU?

 36

•Performance gain compare to a Intel core i7

Pe
rfo

rm
an

ce
 G

ai
n

0.00

1.00

2.00

3.00

4.00

Matrix Add Stencil Saxpy Dedup fib(n=15) Average

0.9
0.61

3.21

0.590.81
1.2

(> 1) = FPGA Faster

How does Performance/Watt compare to CPU?

 37

•Performance/Watt has significant improvement

Pe
rfo

rm
an

ce
/W

at
t

G
ai

n

0

20

40

60

80

Matrix Add Stencil Image Scale Dedup fib(n=15) Average

23.24
14.62

78.33

9.74
16.68

26.05

What is the overhead of task controller?

 38

•ALM Utilization by Sub-block

11%

9%

2%

40%

37%

2%
13%

1%
7%

76%

Tiles Parallel for Task Ctrl Mem Arb Misc

1 Tile / 1 Ins 10 Tile / 1 Ins

Available now
https://github.com/sfu-arch/tapas

Thanks Chisel and Tapir folks

Shout out to related…
• An Architectural Framework for Accelerating Dynamic Parallel Algorithms on

Reconfigurable Hardware (MICRO51)
• Dynamically scheduled high-level synthesis (FPGA18`)

Parametrization and Configuration

 40

•TAPAS generated accelerator is Parametrizable and
Configurable.

- The number of TXUs can be set specifically for each task
base on different criteria.

-Datapath width can be set at this phase, supporting
mixed precision as well.

-Memory modules within each Task Unit are configurable
like scratchpads, network and cache.

