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Abstract—High-level-synthesis (HLS) tools generate
accelerators from software programs to ease the task of
building hardware. Unfortunately, current HLS tools
have limited support for concurrency, which impacts
the speedup achievable with the generated accelerator.
Current approaches only target fixed static patterns
(e.g., pipeline, data-parallel kernels). This constraints
the ability of software programmers to express concur-
rency. Moreover, the generated accelerator loses a key
benefit of parallel hardware, dynamic asynchrony, and
the potential to hide long latency and cache misses.

We have developed TAPAS, an HLS toolchain for
generating parallel accelerators from programs with dy-
namic parallelism. TAPAS is built on top of Tapir [22],
[39], which embeds fork-join parallelism into the com-
piler’s intermediate-representation. TAPAS leverages
the compiler IR to identify parallelism and synthesizes
the hardware logic. TAPAS provides first-class architec-
ture support for spawning, coordinating and synchro-
nizing tasks during accelerator execution. We demon-
strate TAPAS can generate accelerators for concurrent
programs with heterogeneous, nested and recursive par-
allelism. Our evaluation on Intel-Altera DE1-SoC and
Arria-10 boards demonstrates that TAPAS generated
accelerators achieve 20× the power efficiency of an Intel
Xeon, while maintaining comparable performance. We
also show that TAPAS enables lightweight tasks that
can be spawned in '10 cycles and enables accelerators
to exploit available fine-grain parallelism. TAPAS is
a complete HLS toolchain for synthesizing parallel
programs to accelerators and is open-sourced.

Index Terms—High-level Synthesis, LLVM, Chisel,
HLS, Cilk, TAPAS, Hardware accelerator, Power effi-
ciency, Dynamic parallelism, FPGA

I. Introduction
Industry and academia realize that hardware customiza-

tion is required to continue performance scaling as semi-
conductor scaling tapers off. Amazon EC2 [23] and Huawei
have made FPGAs available to the public through the cloud.
Microsoft [35] is also exploiting FPGAs for accelerating
datacenter services. To address the challenges of devel-
oping application or domain specific hardware, high-level-
synthesis (HLS) tools have been introduced. HLS translates
a program in high-level language (e.g., C, C++) to an RTL
circuit specification. It is an open question whether HLS
tools have enough flexibility to permit software engineers
to design high performance hardware.

Task Parallel Accelerators

A key limitation of HLS tools is their approach to
concurrency. Accelerators attains high performance by in-
stantiating multiple execution units that effectively support
both coarse-grain and fine-grain concurrency [1], [5], [34]
(relative to software). Unfortunately, current HLS tools do
not effectively support concurrent languages. HLS tools also
require an extensive set of annotations to generate parallel
architectures. concurrency [10]. High-level-synthesis (HLS)
tools with C interface typically analyze loops and employ
techniques such as unrolling and pipelining [1]. Both Intel
and Xilinx have targeted HLS at data parallelism [26].

HLS tools were aware of the challenges introduced
by concurrency and have sought to exploit higher-level
parallelism. LegUp [2], [11] includes support for a subset of
the OpenMP and pthread APIs, and seeks to benefit from
thread-level parallelism. IBM’s liquid metal [5] supported
streaming kernel parallelism. Both toolchains are limited to
static concurrency patterns, i.e. the parallelism structures
are known during hardware generation and the structures
cannot change during execution.

Recent works and industry-standard HLS tools have
adopted fixed hardware templates that target specific
concurrency patterns. Common templates include data
parallelism, loop parallelism and loop pipelining [29], [33],
[42]. The application programmer is expected to annotate
and modify the application to fit the template. Template-
based HLS adopts a construct-and-run approach in which
the concurrency and operations are scheduled statically
at hardware generation time. Unfortunately, in many
concurrent programs the parallelism evolves as the program
runs, either due to control flow [30], or run time non-
determinism [14], [15] (see example in Figure 1).

Current HLS tools are built on a sequential compiler i.e.,
compiler intermediate representation and passes restricted
to a sequential program-dependence-graph. Hence, prior
tools largely focused on programs with static parallelism
that can be expressed through templates (e.g., pragma
pipeline) or library calls (e.g., OpenCL). Our work focuses
on programs with irregular fine-grain parallelism expressed
implicitly within the program and it has been built on a
parallel compiler released in 2017 [39]. We demonstrate
that for programs with dynamic concurrency, FPGAs can
achieve higher performance/watt than a multicore.

https://github.com/sfu-arch/tapas


1 while(!done) {
2 spawn_pipe_stage() {
3 chunk_t *chunk = next_chunk()
4 if{chunk == NULL} { done = true;
5 exit(0);
6 }
7 }
8
9 spawn_pipe_stage() {

10 chunk->is\_dup = dedup(chunk);
11 }
12
13 if(!chunk->is_dup) {
14 spawn_pipe_stage() {
15 compress(chunk);
16 }
17 }
18
19 spawn_pipe_stage() {
20 write_to_buffer(chunk);
21 }
22 }
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Fig. 1: Parallel accelerator generated by TAPAS for dynamic pipeline parallelization of PARSEC’s Dedup based on
Cilk-P [28] (modified to enhance clarity).
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Our Approach
Our work focuses on synthesis of hardware accelerators

from parallel programs that contain on-the-fly or dynamic
parallelism. TAPAS is a complete HLS framework that
leverages parallel IR [41] to generate the RTL for a
parallel task-based accelerator. The accelerator architecture
includes support for spawning and synchronizing both
homogeneous and heterogeneous tasks at run time. TAPAS
leverages the parallelism markers embedded by Tapir
to generate RTL in two stages. The first-stage analyzes
the parallel IR to infer the task dependencies, required
synchronization, and generates a top-level architecture at
the granularity of tasks. In the second stage, it generates the
dataflow execution logic for each task; we permit arbitrary
control flow (including loops) and memory operations.
The microarchitecture generated by TAPAS is specified
in parameterized Chisel [4] and permits the designer to
vary the number of tiles dedicated-per task, resource per
task (e.g., queue depth, registers, scratchpad) and memory
system capacity.

We illustrate that the dynamic task-based accelerator
has flexibility for realizing nested, heterogeneous, recursive,
irregular or regular concurrency patterns. We briefly discuss
how TAPAS handles the challenges of generating hardware
for a dynamically pipelined program, Dedup from PARSEC
(see Figure 1); the figure includes the commented pseudo
code. HLS tools find this particular code sample challenging
and cannot generate an optimal microarchitecture. First,
the stages in the pipeline change based on the inputs.
As shown in the task graph, for some iterations stage-2
could be entirely skipped based on the results from stage-
1. Second, the stages have different ordering constraints
and exhibit nested parallelism. Stage-2 is embarrassingly
parallel while stage-1 enforces ordering across each se-
quence. Finally, the pipeline termination condition (see
line 4) needs to be evaluated at runtime and cannot be

statically determined (e.g., bounded loop).
To handle dynamic parallel patterns TAPAS generates

a hierarchical microarchitecture that includes first-class
support for generic tasks. At the top-level the accelerator’s
microarchitecture consists of a collection of unique atomic
task units (one for-each heterogeneous task in the system).
Each task unit internally manages the dataflow logic
for executing the task. The generated architecture has
the following benefits: i) dynamic task spawning enables
the program control to skip stages entirely and change
the pipeline communication pattern, ii) the hierarchical
task logic organization permits concurrent tasks to be
nested. TAPAS permits Dedup’s stage-2 to be internally
parallelized while ordering the tasks for stage-1. iii) The
architecture eliminates dedicated communication ports,
and allocates local RAM for communicating data between
the tasks. This permits Dedup’s stage-1 to directly pass
data to stage-3 when stage-2 is bypassed conditionally.
iv) Finally, the architecture does not require any separate
control for managing the task dependencies. TAPAS derives
the concurrency control from the compiler IR and embeds
it within the tasks e.g., pipeline exit function is the
next chunk() dataflow embedded within stage-0.

1) We have developed TAPAS , a complete open-source
HLS tool that generates parallel hardware accelera-
tors with support for dynamic task parallelism.

2) TAPAS ’s framework is based on a parallel compiler
intermediate-representation and includes support
for arbitrarily nested parallelism and irregular task
parallelism. It is language agnostic and has been
tested using Cilk, Cilk-P and OpenMP.

3) We have developed a library of hardware components
for spawning and synchronizing tasks, buffering tasks,
and inter-task communication. We demonstrate that
TAPAS HLS can compose these components to
generate high performance parallel accelerators.



4) We evaluate the performance and flexibility of
TAPAS on the Intel-Altera DE1-SoC and Arria
10 FPGA boards. TAPAS achieves '20× better
performance/watt than an Intel Xeon quad core,
while the performance is comparable to the multicore
processor.

II. Background and Scope
There is a gap in the quality of the hardware gener-

ated by HLS and human-designs a) partly due to the
inability of the HLS tool to comprehend and exploit the
parallelism available in software, and b) partly due to
underlying abstractions being not available in the hardware
architecture. As resource abundant FPGAs appear in the
market it becomes imperative for HLS to support dynamic
parallelism where the user only specifies what tasks can run
in parallel, instead of how the parallel tasks are mapped
to execution units.
A. Why dynamic task parallelism in TAPAS ?

A question that naturally arises when generating a
parallel architecture is how does one specify parallelism
to an HLS tool? There appears to be no consensus among
current toolchains. This is primarily a result of there
not being a standard framework to support concurrent
execution, as is true for CPUs. Common frameworks such
as OpenMP [2], [7] and Intel TBB are implemented using
threads. However, it is unclear if the requirements of
threads (e.g., precise register context, shared memory, per-
thread stack) can be supported on non-CPU architectures
at low overhead. Recent works have included support for
threads in OpenMP loops [3], [41], [43].

We present an alternate vision based on the task abstrac-
tion. Please note that the notion of dynamic tasks [3], [22]
we discuss here is different from the notion of static tasks
explored in prior work [5]. Intuitively, a task is analogous to
some encapsulated computation in software (not unlike a
function call) which takes arguments and produces a value
after running to completion. Every task is described as a
three tuple (f(), args, sync). The function f() represents
a scoped subset of the program dependence graph which
implements the functionality. Args[] is a set of arguments
passed to the function and sync is a run time field that
represents other tasks that need to be synchronized. The
key feature of tasks is that tasks can dynamically spawn
new child tasks at run time. There has been extensive
work in supporting static task parallelism in FPGAs
[6], [9], [10], [21]. Prior works statically scheduled these
tasks on the underlying execution units and relied on the
task abstraction for understanding the static concurrency
pattern. TAPAS provides direct support in hardware for
creating and synchronizing tasks dynamically based on
accelerator execution. TAPAS adopts a dynamic software
task model that has been previously explored in the context
of [24], [27], [38], vector architectures [40] and GPUs [32].
B. Tapas vs Industry-standard HLS

for ( i = 0; i < len; i++)
{ 
  if (node[i].valid == 1)  
      spawn (f( ) , node[i])
}
sync;

Dynamic Parallelism in TAPAS

Static Parallelism in Current HLS

…

for

f( )

Root task
i < len

Child 
tasks

for ( i = 0; i < len; i++)
{ 
  if (node[i].valid == 1)  
      f(node[i])
}

#pragma parallel, unroll 2
i = 0
i = 2
…

   if (node[i].valid)
   if (i < len)

if (node[i].valid

      f(node[i])
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i = 0
i = 2
…

   if (node[i].valid)
   if (i < len)

      f(node[i])
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Fig. 2: Generating parallel for loop. HLS and static
scheduling vs. TAPAS and dynamic scheduling

Dynamic Parallelism vs Static Parallelism
The term dynamic parallelism refers to enabling tasks

to vary at run-time, both in terms of the type of child task
spawned and the number of child tasks spawned. Prior
HLS tools adopt static parallelism in which any concurrent
thread/task is created and scheduled up-front. We use a
commonly used parallel for-loop (Figure 2) to illustrate the
differences between dynamic and static parallelism. The
loop exhibits dynamic parallelism. First, the loop bounds
are determined by a parameter len which is known only
during execution and which varies the number of parallel
loop iterations. Second, the bar() function is invoked only if
node[i] is valid. The figure shows how TAPAS handles this
pattern. TAPAS creates a root task for the loop control,
which spawns a child task, f(), only when required (i.e.,
node is valid) and up to the dynamic maximum of len.
Current HLS tools will unroll the loop to exploit the static
parallelism. When a loop is unrolled, the HLS tools create
multiple hardware execution units onto which successive
loop iterations are statically scheduled at the hardware
construction time (in Figure 2 unroll factor is 2). Therefore,
they must plan for the worst case and allocate resources
for all possible iterations regardless of whether they are
actually executed, and must handle corner cases (e.g. len ¡
unroll).
Static vs Dynamic Scheduling

Another limitation of current industry-standard HLS
tools [16] is the lack of dynamic scheduling i.e., the ability
for the dataflow to handle variances in instruction latency
(e.g., cache misses). Even the HLS tools that support
threads [12], only support static scheduling of instructions.
Since memory instructions also need to have deterministic
scheduling, prior HLS tools primarily support a streaming
memory model in which data is loaded into a scratchpad
ahead of invocation. While the combination of static
scheduling, static concurrency, and streaming memory
model leads to high efficiency, but it limits the type of



workloads that HLS can target. A pre-requisite for support-
ing dynamic task parallelism is shared memory and caches.
Consequentially, TAPAS needs to handle non-deterministic
latency in memory operations (see Section III-C).

Concurrent work from Josipović et al. [25] at FPGA 2018
has started investigating the benefits of dynamic scheduling
of instructions. However, their work only exploits static
parallelism from loops in sequential programs. TAPAS ’s
focuses on dynamic parallelism and parallel programs.
TAPAS includes support for the task abstraction in the
compiler that makes it feasible to target parallel languages
such as Cilk. TAPAS also supports dynamic scheduling,
however this is not our focus.
C. TAPAS vs Prior Work

TABLE I: Comparing the features of HLS tools
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Scope Seq. Kernel Pattern Parallel Prog.
Target Loops Thread Pattern Tasks
Hints #pragma Kernels Pattern Spawn/Sync
Dynamic — 3
Loops Unroll/Pipeline Parallelize
Heterogenity — Limited 3
Nested parallel — Limited 3
Lightweight 3 — 3
Multithreading — 3
Multicore — 3 Multiple execution units

Table I summarizes the feature set of current HLS
tools. Many HLS tools [16] primarily target sequential
programs and unroll loops to exploit instruction parallelism.
A parallel architecture is often realized by using the
HLS compiler to synthesize a single hardware core, and
then typically requires an expert to manually instantiate
multiple instances of the core in a hardware description
language. To avoid this, both Xilinx Vivado and Intel HLS
unroll and pipeline loops to convert loop parallelism to
instruction level parallelism. Achieving efficient hardware
requires the software developer to identify where it might
be feasible to exploit loop parallelism and add additional
hardware-oriented pragmas. HLS tools have anticipated
the need to target higher levels of parallelism. Recent works
have supported a subset of OpenCL, OpenMP or Pthreads.
The primarily target is data parallel kernels. Current HLS
tools schedule the concurrent operations statically and do
not support dynamic spawning, asynchronous behavior,
or nested parallelism. Furthermore, since the HLS tools
statically schedule the memory operations, they require
code annotations to help identify the streaming and FIFO
access patterns between functions [13]. Finally, a promising

avenue of research is HLS for domain-specific patterns.
The hardware expert designs a parameterized template
that targets a parallelism pattern (e.g., pipeline) and the
software developer modifies the applications to ensure the
program structure matches the pattern. Unfortunately,
patterns always risk becoming obsolete.

TAPAS targets parallel programs (not a particular
pattern) and only requires the programmer to identify
concurrent tasks. It is built on a parallel compiler and
leverages the information to automatically synthesize
parallel hardware for arbitrary task graphs. The key novelty
of TAPAS is that tasks can dynamically spawn and
sync with other tasks. This enables TAPAS to handle a
variety of common programming patterns including nested,
recursive and heterogeneous parallelism. Finally, TAPAS
supports dynamic scheduling of operations and handles
non-determinism to enable a cache-based memory model.

III. TAPAS: High-Level-Synthesizing
Dynamic Parallel Accelerators

TAPAS is a hierarchical HLS toolchain for generating
the RTL for a parallel application-specific accelerator
(see Figure 3). TAPAS is language agnostic since it
relies on Tapir-LLVM to parse the parallel program and
generate compiler IR with additional markers indicating
the parallelism. The input to TAPAS is a parallel program
with markers for tasks and parallel loops; currently our
infrastructure has been tested using Cilk, OpenMP and
Cilk-P. Figure 3 shows the stages in TAPAS and RTL
generation for a program with nested parallel loops. TAPAS
consists of three stages. In Stage-1, (Section III-A) TAPAS
analyzes the compiler IR, extracts the task dependencies,
and generates the top-level RTL. The task units are
declared and wired to the memory system. In Stage-
2(Section III-C) the program graph of each task is analyzed,
and the RTL is generated for the dataflow of each task
unit. Finally, in Stage-3 we configure and set the hardware
parameters (e.g., number of execution cores) based on a
specific deployment (e.g., LUTs available on the FPGA)
and generate FPGA bitstream.

TAPAS-generated accelerators support dynamic paral-
lelism, dynamic scheduling, and caches. We restrict all
communication between the ARM and the accelerator to
occur through shared memory. Currently, TAPAS maps
the accelerators to the FPGA on an SoC board. The ARM
and the FPGA share a 512KB L2 cache. We synthesize a
16K L1 cache for the accelerator which is kept coherent
with the L2 through AXI. TAPAS generates a binary for
the program regions/functions that cannot be offloaded
(e.g., due to system calls) and they run on the ARM.
TAPAS does not rely on any hard logic in the FPGA and
synthesizes the logic required to support the parallelism.
This enables a flexible execution model that is independent
of the processor and enables TAPAS to target different
FPGA boards.
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Fig. 3: Overview of TAPAS . Top: Compilation flow. Bottom: Generated output at each stage.

A. Stage 1: Task Parallel Architecture
TAPAS relies on Tapir [39] to comprehend the semantics

required by the task-based accelerator architecture. Tapir
adds three instructions to LLVM IR, detach, reattatch
and sync, to express fork-join parallel programs. Using
these three instructions TAPIR can support dynamic task
spawning (create a concurrent task) and sync (synchronize
parent and child). We describe the front-end task compiler
pass in more detail in §III-F and focus on the hardware
generation itself once the task dependencies are known.
The generated accelerator consists of multiple task units at
the top-level, and each task unit represents a unique task.
Figure 4 illustrates the top-level RTL, the interface and the
parameters associated with the interface. TAPAS supports
time multiplexing (equivalent to simultaneous multithread-
ing) of multiple tasks on an execution unit, dynamic tiling
and assignment of tasks at runtime to different execution
units (equivalent to multicore). A task unit is an execution
engine for a single task and serves as the basic building
block in the architecture. The accelerator can consist of any
number of task units interacting to create different task
graphs. There are four main components within each atomic
task unit: i) The task queue which manages spawned tasks,
ii) Parent task interface (Spawn/Synchronization ports),
iii) Child task interface (Spawn/Synchronization ports),
and iv) Task Execution Unit (TXU) which represents a
pipelined dataflow execution unit.
B. Execution Example

We describe the functionality of each of the components
in the task unit by considering the implementation of the
nested loop example (see Figure 5). The task graph in the
figure illustrates three tasks T0, the outer loop control
and spawner of N instances of inner loop. T1 is the inner
loop control and spawner of N instances of T2, the body.
Finally T2 performs the actual work, reading elements from

1 class NestedAccelerator( implicit p: Parameters)
2 extends Module {
3 // Simple L1 Cache
4 val SharedL1cache = Module(new Cache)
5 // DRAM. AXI4 interface
6 val DRAM = Module(new NastiMemSlave)
7 // Wire DRAM and L1cache to AXI
8
9 // Initialize task units

10 val Task -0 = Module(
11 new Task0(Nt=32, Nr=32, ParentPort = 1,
12 ChildPort=1, new T0-DF())
13 val Task -1 = Module(
14 new Task1(Nt=32, Nr=32, ParentPort = 1,
15 ChildPort=1, new T1-DF())
16 val Task -2 = Module(
17 new Task2(Nt=32, Nr=32, ParentPort = 1,
18 ChildPort=1, new T2-DF())
19 /* ************ Connect Task Units ←↩

***************** */
20 Task -0.io.in <> io.in
21 io.out <> Task -0.io.out
22 Task -1.io.detach.in <> Task -0.io.spawn.out
23 Task -0.io.sync.in <> Task -0.io.out
24 Task -2.io.detach.in <> Task -1.io.spawn.out
25 Task -2.io.sync.in <> Task -1.io.out
26 /****** Connect Cache to Task units ******/
27 }

Fig. 4: TAPAS generated microarchitecture in Chisel [4].

the A[i][j], B[i][j] and adding them. In this application, N
dynamic instances of task T1 will be created (for each
iteration of the outer loop) and each dynamic instance of
T1 will create N instances of T2 (total: N2 instances).

A task in the queue can be in of the following states
• READY: spawned, but not allocated a TXU • EXE: TXU
allocated, but task has not complete • COMPLETE: execution
complete and need to synchronize with the parent • SYNC:
Waiting on synchronization with child tasks. The task
queue metadata consists of a child join counter (Child#),
the ParentID and Args[] RAM (argument RAM). 1
illustrates a spawn operation, with T0 initiating the task
corresponding to the inner loop iteration, T1. A spawn is
a tuple, Args[] and ParentID. The ParentID consists of
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Fig. 5: Execution flow of Nested-loop accelerator generated by TAPAS

[SID, DyID]. The SID refers to the name of the parent
task (in this instance T0) and the DyID corresponds to
the task queue entry allocated to the instance of the
parent task (index 0 here). This corresponds to dynamic
task T0:0 spawning an instance of T1 (a j-loop, when i
= 0). The ParentID metadata available in the spawn is
noted down in the allocated to the spawned T1 task and
will be used during synchronization. In 2 the dynamic
instance T1:0 (corresponding to the inner j loop with
i = 0) creates N instances of the inner body T2. The
field C# (Child#), in task T1:0’s queue entry corresponds
to the count of the children tasks that are created by
dynamic task T1:0. In this example, N instances of T2
are created corresponding to loop iterations i=0,j=0..N-1).
Note that, task T0 may concurrently create other instances
T1:1,T1:2,... (inner j loop for i=1,i=2,..iteration) if there
is enough queuing available. The task unit asynchronously
assigns task execution units for the ready tasks.

In 3 as the instances of T2 complete they synchronize
with their parent task that spawned them. Each task will
only synchronize and join with the parent task that created
it. Here, the T2 instances T2:0...T2:N-1 (corresponding
to tasks i=0,j=0...N-1) will join on completion with the
dynamic instance of their parent T1:0 (i=0, j-loop control).
Joining entails decrementing the counter in the queue
entry (index 0) corresponding to T1:0. The purpose of
noting down the SID and DyId when the T2 tasks were
spawned is clear now. The SID permits composability
and allows heterogeneous task units to communicate with
and dynamically spawn a shared task. The SID serves
as the network id of the parent task unit to route back
on a join. The DyID serves as the index into the queue

within the task unit corresponding to the SID. Finally in
4 , once T1:0 has joined with all its spawned children,

it proceeds to move from SYNC to COMPLETE status and
reattaches back with its parent, T0. The task queue
interfaces decouple task creation from task execution. The
spawn and sync are asynchronous, and employ ready-valid
signals. The asynchronous design permits us to vary the
resource parameters per task without having to reschedule
the tasks to deal with changes in latency.
C. Stage 2: Generating Task Exe Unit (TXU)
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A[i][j]
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+ Add4B

A[i][j] B[i][j]

IN
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B RV

IN
T4 RV

IN
T4

B RV

Idle

EXE

State
Machine

Left & Right 
.fire()

Output
.fire()

Pipeline handshaking 

def fire() = V == 1 &&
            R == 1

Sink←Src DFG node, Op type, Args, Data type
1 // Load operations. load A[] and B[]
2 val LoadA = Module(new Load4B(ID=0))
3 val LoadB = Module(new Load4B(ID=1)(4B))
4
5 // Store operations. store C[]
6 val StoreC = Module(new Store4B(ID=2)(4B))
7
8 // 32bit Int add operation
9 val Int4Badd = Module(new ALU(ID=3,"SAdd")(Int4B))

10
11 // Wire up Add <Int4B >.
12 // sink <> source
13 Int4Badd.io.LeftIO <> LoadA.io.Out
14 Int4Badd.io.RightIO <> LoadB.io.Out
15 StoreC.io.inData <> Int4Badd.io.Out

Fig. 6: Task-2’s Task Execution Unit (TXU).
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Fig. 7: Multiple tasks simultaneously outstanding on TXU.

TXU is the representation of execution engine within
each task unit. Each TXU is a fully pipeline execution
unit which permits multiple dynamic instances of a task
execute simultaneously. The TXUs only communicate at
the task boundaries with each other. All the inter-TXU
communication is marshaled through a shared scratchpad
or the cache.

TAPAS generates the logic for the TXUs based on the
per-task sub-program-dependence-graph earmarked by our
compiler. Each TXU is a dataflow that enables fine-grain
instruction level parallelism to be mined. TAPAS HLS
dynamically schedules the operations in the TXU. An
automatic pipelining process introduces latency insensi-
tive ready-valid interfaces between each operation in the
dataflow. A dataflow graph mapped to the TXU may
contain nodes with multi-cycle latency (e.g. floating point
operations), and non-deterministic latency (e.g., memory
operations). This approach is in contrast to current industry
strength HLS tools which try to schedule the timing all
operations statically; concurrent work in FPGAs has begun
to analyze the potential of dynamic scheduling [25].

Figure 6 shows the add function unit from the file created
by TAPAS , from C[i][j] = A[i][j] + B[i][j]. The
add function unit communicates with Load A[][], Load
B[][], + and Store C[][] via decoupled handshaking
signals which contain ready and valid signals in addition
to data. The handshaking interface is governed by a
simple state machine. This dataflow permits multiple
concurrent T2 tasks to be outstanding at the same time
on the execution unit. Task pipelining is illustrated in
Figure 7. The dynamic task ids correspond to the queue
index allocated at run time. Note that the pipeline of a
TXU is in dataflow order and tasks complete in order
of issue. Any load stalls cause the pipelined dataflow to
throttle and eventually stall; however this leads to a simpler
implementation compared to dynamic dataflow [20].

D. Stage 3: Parameterized Accelerator
TAPAS is a parameterized hardware generator and

seeks to permit late stage parameter binding. As hardware
designs grow in complexity, modularity becomes necessary.
The asynchrony and latency insensitivity permits each
of the task units to be parameterized independently. As

shown in Figure 4 every task unit provides the mechanism
for passing parameters prior to hardware elaboration
and bitstream generation. While each tile has multiple
parameters that can be set including the width and types of
the args RAM, there are primarily two parameters that are
set at this stage in toolchain, the task queue size (Ntasks)
and the number of task execution units (Ntiles). We permit
the user to vary the parameters on a per-task basis. The
latency of the individual tasks and task dependencies will
determine Ntasks. Determining Ntiles is more involved
as it depends on the the processing rate required of that
particular task unit and how many active tasks are required
to potentially hide memory latency.
E. Task Memory interface and Memory Model

In this study, we consider a heterogeneous SoC where
both processing cores and accelerator are integrated into a
single chip. Each of the accelerator’s caches is connected
to the last-level cache, which is shared with the ARM
processor over the AXI bus. A key question is how does
the memory model look like on the accelerator side. TAPAS
permits arbitrary task graph patterns to be converted into
accelerators and thus needs to support a more flexible
cache-like interface.
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Fig. 8: Data Box. Interfaces with memory operations in
logic box and transfers operations to/from a cache or
scratchpad.

In TAPAS all the task units share an L1 cache; it is
conceivable that this model is most suitable for handling a
programming model most familiar to software programmers
[36], [37]. Generating an optimal cache hierarchy is beyond



the scope of this paper and we primarily focus on how to
route values from the cache to the TXUs.

The data box (see Figure 8) connects a memory oper-
ation in the TXU to a memory interface. We currently
support both cache and scratchpad (we only evaluate the
cache memory model in this paper). We choose to group
the common logic for multiple memory operations (e.g.,
mis-alignment) into the data box to minimize resource
requirements. Figure 8 shows the architecture of the data
box. Each data box consists of the following parameterized
microarchitecture components: i) an in-arbiter tree network
that arbitrates amongst requests to the memory interface,
ii) an out demux network that routes responses back to the
memory operations in the TXU’s dataflow, and iii) a table
of staging buffers that contain the actual logic for reading
the required bytes from the cache/AXI memory interface
(which only supports word granularity accesses). Both the
request and response networks are statically routed.
F. Compiler Front-end: Tasks from IR

TAPAS is language agnostic and relies on the parallel
IR introduced by Tapir [39]. Tapir provides the front-end
language bindings that translates Cilk/OpenMP programs
to the LLVM IR. Tapir adds three instructions to the
LLVM IR, detach (or spawn), reattach and sync. Spawn
and reattach together delineate a task. A detach instruction
terminates the block that contains it, spawns a new task
starting from the target block and continues execution in
parallel from the continuation. The reattach terminates the
task spawned by a preceding detach instruction. Since Tapir
assumes a generic threadpool execution model, it leaves the
markers in place in the original PDG (Program Dependency
Graph). We leverage the markers to perform reachability
analysis and extract an explicit task graph, which is the
architecture blueprint for our parallel accelerator. Nesting
loops and irregular flows are analyzed in this stage and in
the resulting task graph all task relations and the basic
blocks that constitute a task are explicitly specified. We
perform live variable analysis to extract and create the
requisite arguments that need to be passed between tasks;
these are used to parameterize the spawn port and args
RAM for each task unit.
IV. TAPAS-generated Accelerators

There are no standard benchmark suites that target
only dynamic parallelism. Table II gives a brief summary
of the accelerator benchmarks and shows the characteris-
tics of each application. Our emphasis is on being able
to implement accelerators for these workloads without
requiring additional effort from the programmer. Here we
study applications that use common software patterns that
current HLS tools either find challenging and may throw
errors.
A. Nested Parallel and Conditional Loops

Related benchmarks: Matrix addition, Stencil,
Image scaling, Saxpy Stencil
Multiple workloads employ the similar pattern of nested

1 /* current: Basic block processed TaskDep: Edges between tasks
2 TFG: Task list and sub-pdg */
3 current = {BB-start}; TaskDep = {Root}; TFG = {};
4 while(current != EMPTY) {
5 startBB = current.top
6 visited[startBB] = true
7 TaskDep.top.insert(bb)
8 for-each-successor succ of bb:
9 if (visited[succ] == true) continue;

10 current.push(succ)
11 if (Edge(bb, succ) == SPAWN) {
12 child = new Task(succ)
13 TaskDep.push(child)
14 TFG.insert(child)
15 TFG.insertEdge(TaskDep.top, child, SPAWN)
16 } elseif (Edge(bb,succ) == REATTACH) {
17 Task currentTask = TaskDep.pop()
18 TFG.insertEdge(tst.top, currentTask, REATTACH)
19 TST.insert(succ)
20 } else {/*regular edge*/
21 TST.top.insert(succ)
22 dfs(TFG, current, TST)
23 Input.pop()
24 }

Fig. 9: TAPAS pass for extracting tasks from Tapir

Start block for
analysis

Reachable
blocks from
start

Nested.
Parent Spawn−−−−→Child

Sync−−−→

TABLE II: Benchmark Properties
Name HLS Challenge Memory

Pattern
Per-
Task
#
Inst

#
Mem

Matrix Add Nested loops Regular 49 21
Image Sca. Nested,If-else loops Regular 52 25
Saxpy Dynamic exit loops Regular 29 16
Stencil Nested parallel/serial Regular 23 16
Dedup Task Pipeline Irregular 180 72
Merge Sort Recursive parallel Regular 36 52
Fibonacci Recursive parallel Regular 26 19

loops. However, there are variations based on the paral-
lelism of the loop nests, loop depth and conditional loop
entry/exit. Here, we briefly discuss Stencil. Stencil is an
iterative kernel (Figure 10) that updates array elements in
a loop. While the loop is embarrassingly parallel, the loop
bounds are variable which introduces dynamic parallelism
HLS tools parallelize this pattern in two ways: 1) flattening
the inner-loops to a single level or 2) having the HLS
tool only parallelize the innermost loop (which is not
parallel in this case), while executing the other levels
serially. In contrast, TAPAS decomposes nested loops into
multiple task units. Each task unit is asynchronous and
can independently configure the number of tiles to exploit
all the available parallelism. TAPAS supports arbitrary
nesting of loops; serial and parallel loops can be nested in
any order to any depth (resources permitting). Since the
task unit exposes an asynchronous spawn/sync interface,
TAPAS can set up each loop independently. Every loop
can execute in parallel or serial fashion based on program
semantics, without requiring any changes to the outer loops.

B. Pipeline Parallelism
Dedup code and hardware accelerator are outlined in

Figure 1. Dedup has an irregular pipeline pattern. The
main challenges posed by Dedup are:
• Task-Level Pipeline: HLS tools have limited sup-

port for task-level pipelines and primarily target loop



1 void stencil () {
2 /* Parallel for loop */
3 cilk for (pos = 0; pos < NROWS * NCOLS; pos ←↩

++) {
4 /* Serial for loop */
5 for (nr = 0; nr <= 2* NBRROWS; nr ++) {
6 /* Serial for loop */
7 for (nc = 0; nc <= 2* NBRCOLS; nc ++) {
8 int row = (pos/NCOLS) + nr - NBRROWS;
9 int col = (pos & (NCOLS -1)) + nc - ←↩

NBRCOLS;
10 i f ((row < NROWS)) {
11 i f ((col < NCOLS)) {
12 ...

Inner loop 1(serial)Root task
cilk_for(pos=0;

…)
for(nr=0;…)

for(nc=0;…)

Inner loop 2 (serial)

Fig. 10: Stencil Accelerator

pipelining. Dedup is parallelized using tasks that
have have non-trivial entry and exit logic, making
it challenging to convert them to loops.

• Conditional stages: Emerging research [11] has
sought to support functional pipelines using FIFO
queues that require the program to be rewritten.
Unfortunately, dedup also has conditional pipeline
stages (see S2 in Figure 1) which FIFO queues cannot
support. FIFO queues fix producer and consumer
stages and cannot handle conditional pipelines.

• Intra-stage parallelism: The FIFO ports are or-
dered and this would lead todedup losing parallelism
in the S2 stage, which permits out-of-order chunk
processing (see task-dependencies in Figure 1).

• Pipeline control: Finally, the pipeline termination
condition is dynamically determined by an exit func-
tion (get next chunk(). HLS tools do not support
dynamic exits, since they statically schedule opera-
tions.

TAPAS does not suffer from these limitations since it
supports dynamic spawning/syncing of tasks and execution
units are assigned at runtime. Furthermore, all tasks
communicate with each other through shared memory
and the parallelism is not limited by extraneous hardware
structures such as FIFO.
C. Recursive Parallelism

TAPAS can effectively generate accelerators for recur-
sively parallel programs. HLS tools have traditionally not
supported recursion [11], [19] due to the lack of a program
stack. Nothing precludes the addition of a stack, but it
would require changes to the HLS compilation framework.
Figure 11 illustrates how TAPAS can support recursively
parallel mergesort.

In mergesort, the primary function employs a divide

and conquer strategy. It partitions an array into two
halves, and recurses on each half in parallel. The parent
function then waits on the children and merges the sorted
halves. To implement recursion it must be possible for
more than single invocation of the same function to exist
at the run time. Further, the data also has to be implicitly
passed via a stack. TAPAS achieves this through the
following: i) TAPAS precisely captures the state needed by
a recursive task from the LLVM IR and implicitly manages
the stack frames in a scratchpad. ii) The task controller
supports dynamic scheduling and asynchronous queuing,
which permits a task to spawn itself without logic loops.
iii) The task controller tracks the dynamic instances to
support implicit parent-child synchronization iv) Finally,
all return values from the recursion are passed through
shared cache.

1 void mergeSort (...) {
2 i f (start < end) {
3 int mid = start + ((end - start) / 2);
4 /* Spawn self to sort 1st half */
5 cilk spawn mergeSort(list , start , mid);
6 /* Spawn self to sort 2nd half */
7 cilk spawn mergeSort(list , mid + 1, end);
8 /* Parent waits for children */
9 cilk sync;

10 merge(list , start , mid , end)
11 }
12 }

…

Mergesort Tiles 

Task controller

sp
aw

n sync

Mergesort  Dynamic Tasks

Fig. 11: Accelerator for recursive mergesort.

V. Evaluation
It is challenging to find a fair baseline since dynamic

parallelism is not supported by existing HLS toolchains.
Running our benchmarks on the FPGA would entail
changing the algorithm and memory model, and a program
re-write. Even finding a baseline CPU is challenging
since the Cilk and Tapir are currently x86-only. The x86
multicore’s cache hierarchy is deeper and larger than the
FPGAs, which makes it challenging to understand the
impact of dynamic parallelism independent of the memory
system. We answer the following questions: i) Can TAPAS
support fine-grain tasks? How fine-grain can the tasks be
(§ V-A) ? ii) Is the performance improvement attributable
to low task spawn latency or speeding up individual tasks
with dataflow execution? (§ V-C) iii) What is the baseline
performance compared to an Intel i7 quad core. (§ V-C)
iv) What is the energy consumption and performance/watt
benefit compared to a Intel i7 (§ V-D). In all the cases,
we use the same unmodified Cilk programs. v) How does



static parallelism with prior HLS tools compare against
dynamic parallelism in TAPAS (§ V-E)
A. Parallel Task Overhead

Result: The overhead of spawning a task on an FPGA
is significantly less than a software. This enables small, fine
grain tasks to scale better.

1 void scale(int *a, int n) {
2 int i;
3 cilk_for(i=0;i<n;++i) {
4 a[i]++;
5 }
6 return;
7 }
8

(a) Test Code

pfor_inc

pfor_cond

pfor_body

cilk_for

Task 
Controller

Worker
Tiles
(a[i]++)

(b) Parallel Task Tiling

Fig. 12: Scalability Test Code
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Fig. 13: Performance Scaling with Tiles
The microbenchmark in Figure 12(a) was synthesized

to see how fast tasks can be spawned. Figure 12(b)
provides a top-view of the generated architecture. We
incrementally varied the amount of work (”+” operations)
in the loop body. The performance is plotted against an
increasing number of worker tiles (Figure 13). On a Arria
10 ('300Mhz) target device, we achieve a maximum spawn
rate of 40 million spawns/second. Even for fine-grain tasks
( 50 instructions), the performance scales monotonically
with the addition of parallel worker tiles. ’Software’ in the
plot (Figure 13) refers to spawning a task of 50 increments;
the program was run on a Intel i7-3.4Ghz, 8MB L2 (four
cores). At such fine-granularity, the software runtime for
Cilk provides zero benefit due to task spawning overheads.
TAPAS exploits the low overhead of task spawning on an
FPGA and enables fine-grain parallelism not exposed in
software.
B. Resource Utilization

Result:Arria 10 FPGA board can support '100 parallel
tasks each containing 100 integer operations.

Table III shows the per-instruction and per-tile resource
utilization of the accelerator. The test code was synthesized
for two Intel SoC FPGAs, the Cyclone V and Arria 10 (see
Table III). The primary sources of overhead in TAPAS are

the task controller logic and memory arbitration. On the
smaller Cyclone V SoC, 10 tiles of 50 integer operations
each filled 85% of the chip (153Mhz). On the larger Arria 10
board the accelerator could achieve 308 MHz and occupied
12% of the chip. A single M20K block RAM consumed is
for queuing the spawned tasks in the task controller logic.

TABLE III: FPGA Utilization
MHz Tile Ins. ALM Reg BRAM %Chip

Cyclone V (5CSEMA5)
185.46 1 1 1314 1424 1 5
178.09 1 50 2955 3523 1 10
153.61 10 1 7107 8547 1 24
159.24 10 50 24738 27604 1 85

Arria 10 (10AS066)
308 10 50 28844 27659 1 12

0 20 40 60 80 10
0

1T/1Ins.

1T/50Ins

10T/1Ins

10T/50Ins

Tiles
Parallel For

Task Ctrl
Mem Arb

Misc.

Fig. 14: ALM Utilization by Sub-block
Figure 14 shows the relative amount of ALM resources

(aka. LUTs and registers) used by each sub-block of the
design. In the extreme case (1 operation/task), 60% of
the logic is non-compute overhead; at 50 operations/task,
the overheads is '20%). As the number of execution tiles
increases, the overhead of the control logic is amortized
and at 10 tiles the control overhead is reduced to 3%. The
memory network required to support shared memory access
is less than 10% of overall chip resources. The network
is primarily needed to support dynamic scheduling and
routing values back and forth from the shared cache to the
internal nodes in the task execution unit.
C. Scalability and Performance

Result 1: TAPAS generated accelerators exploit all the
available parallelism exposed by the applications and scale
with increasing hardware resources (1.5–6×)

Result 2: To improve accelerator performance compared
to an Intel i7 multicore a better cache hierarchy is required.

Figure 15 plots the performance when varying the
number of execution tiles per task. A performance increase
from the baseline is seen in all examples with the exception
of Dedup. In Dedup even the baseline case (1 tile) has
four heterogeneous task units (Figure 3) organized as a
pipeline, with one execution tile per task unit. Any further
improvement with increasing tiles/task is feasible only if
the pipeline stages are unbalanced (not the case here).



The saxpy and matrix addition improve with the addition
of a second tile, but the benchmarks quickly saturate
the cache bandwidth as their inner loops are small and
dominated by memory reads and writes. In contrast, the
Stencil benchmark is more computationally intense and
consequently scales well even up to 8 tiles and beyond.

Q2. In Figure 16, we compare the execution time of
accelerators against an Intel i7 quad-core (3.4Ghz,8MB
L2,21GB/s DRAM). Identical Cilk benchmarks were used
for both the i7 runs and TAPAS . We set the concurrency
to be identical (four cores for i7 and four tiles for TAPAS)
. Accelerator designs were generated for both Cyclone V
SoC FPGA and Arria 10 SoC FPGA. On the Cyclone V
the accelerators performed at approximately 50% of the
multicore (even achieving speedup in a few cases). On the
Arria 10, the generated accelerators performed on par with
the i7 as a result of higher frequency (300Mhz vs 150Mhz
for the Cyclone V). The Dedup accelerator achieved best
speedup since the accelerator implemented the pipeline
more efficiently than software. The mergesort accelerator
performed poorly in comparison to the Intel i7 since it
is completely memory bound and limited by the memory
system on the FPGA.
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Fig. 15: Performance Scalability.

To understand the impact of the memory system, we
ran the non-Cilk, sequential programs on the ARM CPU
of the SoC board (same memory hierarchy as FPGA) and
find it to be 13× slower than the i7. Any performance
difference of our accelerators with the i7 is a result of:
slower clock (FPGA 150Mhz vs 3.4Ghz i7) and smaller,
less sophisticated cache hierarchy.

D. Energy Consumption
Result: TAPAS-generated accelerators exceed the energy

efficiency of the multicore often by 20×).
In Table IV we report the absolute power consumption

and resource utilization of the generated accelerators. The
power is obtained using using Intel Quartus PowerPlay. It
is an estimate of total power (static and dynamic) based on
signal activity levels derived from gate-level simulation. The
tabulated data shows how even with varied parallel patterns
such as Stencil (nested loops) and Mergesort (recursive)
we can effectively exploit the available resources ( 50%
of the Cyclone V FPGA chip). Mergesort is the largest
design using roughly half of the available chip resources and
consuming approximately 1.5W of power. We compare the
performance/watt (Figure 17) of the accelerator against a
multicore; in both cases we set the concurrency level to four.
The power for the multicore is directly measured through
the RAPL interfaces. TAPAS accelerators often achieve
over 20× better performance/watt than the multicore.

TABLE IV: FPGA Resources (Board: Cyclone V)
Bench Tile MHz ALMs Regs BRAM Power(W)
SAXPY 5 149 7195 9414 3 0.957
Stencil 3 142 11927 11543 3 1.272
Matrix 3 223 4702 7025 3 0.677
Image 4 141 4442 5814 3 0.798
Dedup 3 153 10487 6509 3 1.014
Fibonacci 4 120 5699 9887 62 1.155
Mergesort 4 134 14098 24775 74 1.491

E. Intel HLS vs TAPAS
An apples-to-apples comparison with prior HLS tools

is challenging since: i) HLS tools only support static
parallelism. It is not feasible to convert some applications to
use static parallelism (e.g., recursive mergesort), and with
others(e.g., Dedup) the conversion changes the algorithm
entirely. ii) HLS tools deploy a streaming memory model
since they statically schedule all instructions with known
latencies. TAPAS employs caches and shared-memory,
which are a pre-requisite for dynamic parallelism.

To attempt a quantitative comparison we use two bench-
marks, SAXPY and Image scaling. Among our benchmarks
these were amenable to static parallelism. We used the Intel
HLS Compiler (v17.1) and employ the suggested streaming
DRAM interface. 1. We set up the DRAM latency for both
the Intel HLS and TAPAS to 270ns ( 150Mhz FPGA clock).
We also set the same concurrency level. In HLS the loops
was unrolled 3 times and TAPAS was configured to use 3
tiles. The results are listed in Table V. The results indicate
that TAPAS is pretty competitive. It may be feasible to
hand optimize the HLS implementation further, but we
could also optimize TAPAS . The most notable difference is
where the block RAMs are utilized. Intel HLS appears to
generate large stream buffers in its load and store interfaces.
In contrast, TAPAS uses a 16K L1 cache shared by all task
units, but also expends block RAMs in the task queue.

1The part 3 ddr masters.cpp example included with Intel HLS
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Fig. 16: Performance. TAPAS vs Intel i7.

0 10 20 30 40 50 60 70 80 90
Performance/Watt Gain

Matrix Add

Stencil

Saxpy

Image Scale

Dedup

Fib(n=15)

Mergesort

20.22x

14.4x

32.27x

10.6x

66.9x

13.3x

1.3x

26.71x

16.8x

30.57x

9.7x

78.3x

14.6x

1.9x

Arria 10

Cyclone V

> 1 means FPGA better

Fig. 17: Performance/Watt: TAPAS vs Intel i7.
TABLE V: Intel HLS vs TAPAS (Board: Cyclone V)
Bench Tool MHz ALMs Reg BRAMms

Image Intel HLS 155 5467 10466 67 20ms
TAPAS 152 4543 7126 10 21ms

SAXPY Intel HLS 181 3799 7961 38 103ms
TAPAS 146 4254 5718 11 99ms

VI. Thoughts and Future Directions
Our results demonstrate that FPGAs and hardware ac-

celerators have the potential to address a long outstanding
challenge in concurrency, effective support for dynamic fine
grain parallelism. The following facets need to be addressed
to further improve performance.
• Cache hierarchy: To compete against a multicore

processor we need to improve the overall cache hi-
erarchy, both bandwidth and latency. The current
cache macro-block we release as part of the toolchain
is borrowed from the RISC-V cores with limited
support for multiple outstanding cache misses. Our
AXI implementation is also sub-optimal as we do
not yet exploit all the burst options available in the
protocol.

• Task controllers: The task controllers and queuing
logic add latency to the critical path. In many work-
loads (e.g., bounded size matrix multiplication) there
exist loop patterns that can be statically parallelized.
TAPAS can benefit from statically scheduling such
loops, and eliminating the task controllers. The chal-
lenge is identifying loops where this optimization may
be feasible.

• Opportunity for Dynamic Parallelism: TAPAS
relies on the compiler front-end (Tapir in this paper)
to capture the parallelism intent of the workloads.
TAPAS is currently capable of generating accelerators
for the widely used fork-join parallelism [17]. In
our current workloads, apart from the initialization,

all other functions are offloaded to the accelerator.
Unfortunately, our compiler front-end does not explic-
itly capture data-driven parallelism (e.g., inter-stage
queues in a pipeline, channels in golang). As a result
TAPAS achieves data-driven synchronization through
the shared cache and memory. In the future, we plan
to to map data-driven parallelism to explicit hardware
structures (e.g., hardware fifo queue [13]) to improve
the overall efficiency.

VII. Summary
TAPAS ’s primary goal is to provide an intuitive HLS

toolchain for software programmers to generate parallel
accelerators. We have decoupled concurrency from par-
allelism; we use the task-based programming framework
to convey what can run in parallel and generate an
architecture that can dynamically explore the available
parallelism at run time. We hope this will be an effective
framework for those in the community to build and
exchange parallel accelerators. We have released TAPAS
open source (github link redacted) which includes i) LLVM-
based compiler back-end that translates parallel compiler
IR to parallel accelerator architectures in Chisel, ii) a
framework to convey concurrency and task parallelism
to TAPAS , iii) Chisel libraries implementing support for
task spawn/sync/reattach operations on an FPGA, iv)
sample parallel accelerators (e.g., pipeline, nested loops,
heterogeneous).
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